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An equation which represents the content of the variational theorem of generalized 
Cosserat-medium elasticity is introduced. It is shown that, on the basis of this 
theorem, the basic energy equation of this medium may be obtained. 

In investigating such rapidly occurring processes as the heating of a solid by a laser 
pulse, it is necessary to take the finite rate of heat propagation into account, which may 
be done by introducing an additional term in the Fourier heat-conduction law [i, 2]. Heat- 
conduction and thermoelasticity theories based on this hypothesis are spoken of as general- 
ized theories. The basic equations and theorems of generalized thermoelasticity for a sym- 
metric medium are given in [3]. On the other hand, as noted in [4], phenomena occurring in 
granular and polycrystalline media are better described by the Cosserat model than by the 
classical symmetric-medium model. Cosserat-medium equations of equilibrium and motion are 
given in [4, 5]. The Cosserat-medium thermoelasticity equations, for an infinite rate of 
heat propagation, were obtained and analyzed in [4, 6]. The complete system of generalized- 
thermoelasticity equations for a Cosserat medium was obtained in [7]. 

The Cosserat-medium equations of motion given in [4-8] take the form 

v . T + X =  pu, 

v .M + Y - - 2 a  ~ : I . ~ ,  (1)  

where u is a small-displacement vector; a T is a vector corresponding to the tensor T [9]. 
The defining equations, given in [4], take the form 

T ~ 2~? + + 2~?- + (~? "" E -- ~O0~) E; 

M _ = 2 y z + - i - 2 e z - + ~ ( z . . E )  E; (2) 

s = ~ . ' E - +  mO0~, 

where 

~=VO; ~ = V U + o •  (3) 

Here 6= (O--O0)O~ I is the relative temperature deviation from the initial value; ~, a, ~, ~, 
y, c, B, m are constants characterizing the elastic and thermophysical properties of the 
medium, introduced in [4]; the superscripts plus and minus denote the symmetric and antisym- 
metric tensor components, respectively. 

Consider a body of volume V bounded by a surface ~, at which bulk forces X, bulk moments 
Y, surface forces F, and surface moments P act. It is assumed that heat liberation with a 
bulk density w occurs inside the body, and that there is a temperature distribution H at the 
surface. 

Introducing the virtual displacement 6u and the virtual rotation ~m, scalar multiplica- 
tion of the first relation in Eq. (I) by du and the second by dm is performed; they are then 
added and integrated over the volume, to given 

,f {(v.T).6u + X.~u--  ~ . ~ u  + (V'M)'6o + Y.~o- -  2 a r . ~  _ 0.~) .6o} dV = 0. (4) 
v 

Using the Ostrogradskii--Gauss theorem and the first two defining relations in Eq. (2), 
Eq. (4) is brought to the form 
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:#here  

[(x - -  ~ {i). 8u + (Y - -  i./,;). 80>1 dv + S IF. 8u + P. 8oi dO +'~O0 [ t} (By" E) d V  - -  8 W  = O, 

v �9 r 
(5) 

(E-" V)a + ~ (E,. ~)~} dV. W = ( {~ (y+ "" y+) + ~ (Y-"" ?-} + Y (z* '" z+) + 81{z- '" z-) + T T (6) 
r 

St is now necessary to obtain an equation analogous to the Blot equation. It may be intro- 
duced as in [3]. In contrast to [3], the density of bulk heat liberation is assumed to be 
nonzero. Consider the entropy-balance equation [i0] 

O0~(l+8)=--v.q+~i O0s~--v'q+ ~ (7) 

and the generalized Fourier law [2] 

�9 oq + q = -- kOoV~. (g) 

Introducing the Blot vector B 

B = OT:q, (9) 

Eq. (8) is multiplied by the virtual increment ~B of the Blot vector and integrated over the 
volume, to give 

I ~o~ + B + kv~}. 6Bay = o. r (lO) 

Transforming the result in accordance with the Ostrogradskii--Gauss theorem gives 

f {[ToB q- B ] . S B - -  k~v .SB  } d r +  k ~ Hn.8Bd~ = 0. (Ii) 

Multiplying Eq. (ii) by --@ok -I and adding Eq. (5) yields a variational equation which repre- 
sents the content of the variational theorem of generalized Cosserat-medium thermoelasticity 

I ::x - p~). 8~ + (Y- I. ~). 8oi dV + .[ :F. 6u + p. 8o1 d, 
v m (12) 

g V V O 

This equation may be used, in particular, to derive the basic energy equation. Suppose 
that virtual increments on the interval (t, t +dt) coincide with real increments. Then Eq. 
(12) yields 

5 5 L + A - -  K - -  W + ,@o ~ (y- .  E) dV --  @o----ff v 6 
v v 

where 

L = [ (x.,i + v. ~) dV; A = f (F.,i + p.d) dO; 
g r 

K= TI j bfi2+(I" d).~] dr. (s4) 

v 

Using Eqs. (7) and (8) and the third relation in Eq. (2)~ it is not difficult to show, using 
the Ostrogradskii--Gauss theorem, that 

O0k (%q' + q)" ~V" qdV--  
v v o 

(15) 

where 

o -- kOo 3" m,.v,~dr v = .i o (~ + , o ~ )  dE; 
v 

V V v 

(16) 
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Hence, Eq. (13) may be written in the form 

L-~A+Q+U+ X=W+K+P- (17) 

Except for the notation used, this equation coincides with the basic energy equation of 
generalized Cosserat-medium thermoelasticity derived in [7] directly from the complete system 
of equations in the displacements. 

Note that, when I = 0, P = 0, y = s = B = 0, Eq. (12) transforms to the variational equation 
of generalized symmetric-medium thermoelasticity. Then, in contrast to the equation given 
in [3], it takes the presence of bulk heat sources into account. 

NOTATION 

T, shear-stress tensor; M, moment-stress tensor; X, external-bulk-force vector; Y, 
external-bulk-moment tensor; u, displacement vector; ~, small-rotation vector; p, density; 
I, tensor characterizing dynamic properties of medium under rotation; a T, vector correspond- 
ing to tensor T; y, asymmetric strain tensor; ~ , flexure--torsion tensor; s, entropy per 
unit volume; e, absolute temperature; O o, initial temperature of medium; ~, relative temper- 
ature deviation from initial value; E, unit tensor; ~, a, %, v, y, e, ~, m, constants char- 
acterizing the mechanical and thermophysical properties of the medium; V, volume; ~, surface; 
F, external-surface-force vector; P, external-surface-moment vector; w, bulk-heat-source 
density; H, temperature distribution at surface; q, heat-flux vector; k, thermal conductivity; 
To, constant characterizing heat-propagation rate; B, Biot vector; L, power of external bulk 
forces and moments; A, power of external surface forces and moments; K, kinetic energy; W, 
work of deformation; P, heat potential; U, power of bulk heat sources; X, dissipation func- 
tion: Q, thermal power of surface sources. 
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